Abstract

A parametric version of the Borwein-Preiss smooth variational principle is presented, which states that under suitable assumptions on a given convex function depending on a parameter, the minimum point of a smooth convex perturbation of it depends continuously on the parameter. Some applications are given: existence of a Nash equilibrium and a solution of a variational inequality for a system of partially convex functions, perturbed by arbitrarily small smooth convex perturbations when one of the functions has a non-compact domain; a parametric version of the Kuhn-Tucker theorem which contains a parametric smooth variational principle with constraints; existence of a continuous selection of a subdifferential mapping depending on a parameter. The tool for proving this parametric smooth variational principle is a useful lemma about continuous ε \varepsilon -minimizers of quasi-convex functions depending on a parameter, which has independent interest since it allows direct proofs of Ky Fan’s minimax inequality, minimax equalities for quasi-convex functions, Sion’s minimax theorem, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.