Abstract

Four-parameter sinh–arcsinh classes provide flexible distributions with which to model skew, as well as light- or heavy-tailed, departures from a symmetric base distribution. A quantile-based method of estimating their parameters is proposed and the resulting estimates advocated as starting values from which to initiate maximum likelihood estimation. Parametric bootstrap edf-based goodness-of-fit tests for sinh–arcsinh distributions are proposed, and their operating characteristics for small- to medium-sized samples explored in Monte Carlo experiments. The developed methodology is illustrated in the analysis of data on the body mass index of athletes and the depth of snow on an Antarctic ice floe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.