Abstract

Blind-deconvolution microscopy, the simultaneous estimation of the specimen function and the point-spread function (PSF) of the microscope, is an underdetermined problem with nonunique solutions that are usually avoided by enforcing constraints on the specimen function and the PSF. We derived a maximum-likelihood-based method for blind deconvolution in which we assume a mathematical model for the PSF that depends on a small number of parameters (e.g., less than 20). The algorithm then estimates the unknown parameters together with the specimen function. The mathematical model ensures that all the constraints of the PSF are satisfied, and the maximum-likelihood approach ensures that the specimen is nonnegative. The method successfully estimates the PSF and removes out-of-focus blur. The PSF estimation is robust to aberrations in the PSF and to noise in the image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.