Abstract

Sinusoidal modeling is one of the most popular techniques for low bitrate audio coding. Usually, the sinusoidal parameters (amplitude, pulsation and phase of each sinusoidal component) are kept constant within a time segment. An alternative model, the so-called Exponentially-Damped Sinusoidal (EDS) model, includes an additional damping parameter for each sinusoidal component to better represent the signal characteristics. It was however never shown that the EDS model could be efficient for perceptual audio coding. To that aim, we propose in this paper an efficient analysis/synthesis framework with dynamic time-segmentation on transients and psychoacoustic modeling, and an asymptotically optimal entropy-constrained quantization method for the four sinusoid parameters (e.g., including damping). We then apply this coding technique to real audio excerpts for a given entropy target corresponding to a low bitrate (20 kbits/s), and compare this method with a classical sinusoidal coding scheme using a constant-amplitude sinusoidal model and the perceptually weighted Matching Pursuit algorithm. Subjective listening tests show that the EDS model is more efficient on audio samples with fast transient content, and similar to the classical model for more stationary audio samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.