Abstract

With a growing number of available datasets especially from satellite remote sensing, there is a great opportunity to improve our knowledge of the state of the hydrological processes via data assimilation. Observations can be assimilated into numerical models using dynamics and data-driven approaches. The present study aims to assess these assimilation frameworks for integrating different sets of satellite measurements in a hydrological context. To this end, we implement a traditional data assimilation system based on the Square Root Analysis (SQRA) filtering scheme and the newly developed data-driven Kalman-Takens technique to update the water components of a hydrological model with the Gravity Recovery And Climate Experiment (GRACE) terrestrial water storage (TWS), and soil moisture products from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS) in a 5-day temporal scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call