Abstract

Wire and arc additive manufacturing (WAAM) is an advanced 3D printing method for metallic materials on the foundation of traditional arc welding processes. WAAM is regarded as a proper way to manufacture large-dimensional metallic parts with the combination of high deposition rate and low cost. In this research, a specifically designed and manufactured low carbon high strength steel (Grade 3D AM 80 HD) wire, equivalent to a composition of AWS ER 110S-1 wire, was deposited using WAAM to print a muti-beads wall aiming to explore its feasibility for heavily loaded marine applications. A parametric investigation was proceeded to find the optimal deposition voltage and overlap ratio. A vertical position compensation method was adopted to optimize the step-up distance for welding torch between neighboring layers. Microstructure of the deposited component was characterized and also indicated by Thermal-Calc Software, followed by the measurement of hardness and prediction of tensile strength. Furthermore, a comparison of tensile strength of the WAAMed 3D AM 80 HD wall, 3D AM 80 HD wire, AWS ER 110S-1 wire, and a WAAMed wall produced by wire manufacturer (Voestalpine Böhler Welding Corporation) was conducted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call