Abstract

Silicon carbide (SiC) is a high performance ceramic material which is increasingly used in applications which demand for high temperature stable materials. The microstructuring of this material in its sintered state is a challenge for conventional machining methods due to its extraordinary mechanical properties. To overcome these limitations the process of electrical discharge machining (EDM) was modified with a so called assisting electrode (AE) to enable the structuring of non-conductive ceramics such as SiC. This paper presents a parametric analysis of micro electrical discharge milling process of non-conductive SiC for two different tool materials, tungsten carbide (WC) and copper (Cu). A full factorial design with four factors was conducted. The significant factors are shown with main effects plots. Two sets of optimized parameters for maximum material removal rate (MRR) and minimum tool wear rate (TWR) for both tool materials are presented. Hardness and surface roughness are measured and compared to the non-machined material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call