Abstract

In the present communication an effective parametric analysis on the mechanical properties (tensile and flexural strength) of bagasse fiber-reinforced vinyl ester (BFRVE) composites were conducted, and then the fabrication process parameters were optimized by using Taguchi and analysis of variance techniques. Composites plates were fabricated by Taguchi’s L18 experimental design as the function of process parameters such as fiber length, fiber content, fiber diameter, sodium hydroxide concentration and sodium hydroxide treatment duration. The optimum process parameters to obtain the maximum strength values were identified using signal-to-noise ratio calculations. Then, the results were analyzed to know the percentage contribution of each fabrication process parameter on the tensile and the flexural strength using analysis of variance. A multivariable non-linear regression model was developed to predict the strength values and compared with experimental strength values. The developed models were validated by 10 additional experimental results using the mean absolute percentage error (MAPE). The results reveal that the fiber content (40 wt%) is the most significant factor influencing the tensile and flexural strength. An acceptable level of mean absolute percentage errors (8.57% for tensile strength and 9.13% for flexural strength) was obtained in both cases. Finally, the results indicate that this model can be used efficiently for prediction of tensile and flexural strength of BFRVE composites without any further experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.