Abstract

A synthesized gear mesh and dynamic model assuming line contact that is derived from a set of manufacturing parameters is formulated for analyzing the beveloid gear mesh-coupling mechanism. Using the proposed model, the effect of the dominant geometry design parameter that is the crossed angle between the first principal directions of the tooth surface curvatures (FPD-angle) on gear mesh characteristic and dynamic response is investigated. Also, the analysis of the gear mesh characteristic and dynamic response subject to torque load variation is performed. It is shown that the dynamic transmission error and dynamic mesh force worsen as the geometry FPD-angle increases for a specific torque load level. Furthermore, even though higher torque load can produce larger contact area, which is desirable, it also increases the gear mesh stiffness and transmission error that tend to aggravate dynamic response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call