Abstract

Cooling has a significant share in energy consumption, especially in hot tropical regions. The conventional mechanical vapor compression (MVC) cycle, widely used for air-conditioning needs, has high energy consumption as air is cooled down to a dew point to remove the moisture. Decoupling the latent cooling load through dehumidification from the sensible cooling load can significantly improve the energy requirement for air-conditioning applications. Solid desiccants have shown safe and reliable operation against liquid desiccants, and several configurations of solid desiccants dehumidifiers are studied to improve their performance. However, the characteristics of solid desiccants are critical for the performance and overall operation of the dehumidifier. The properties of every desiccant depend upon its porous adsorbing surface characteristics. Hence, it has an optimum performance for certain humid conditions. Therefore, for a better dehumidification performance in a specific tropical region, the solid desiccant must have the best performance, according to the humidity range of that region. In this article, a theoretical methodology has been discussed to help the industry and chemists to understand the porous structural properties of adsorbent surfaces needed to tune the material performance for a particular humidity value before material synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.