Abstract

Performance analysis and optimization of an endoreversible Brayton cycle coupled to a Brayton refrigeration cycle has been performed using finite-time thermodynamics. The analy-tical formulae are derived with respect to power, efficiency, optimal extracted pressure ratio of air refrigeration cycle corresponding to optimal power, optimal power and the corresponding efficiency. The influences of various parameters on the cycle performances are analysed by numerical examples. The results show that there exists one optimal pressure ratio of the compressor corresponding to maximum power and another optimal pressure ratio of the compressor corresponding to maximum efficiency; the compressor inlet temperature is reduced by mixing the chilled working fluid from the Brayton refrigeration cycle and the main intake working fluid streams; the intake working fluid temperature could be controlled even below the temperature of the heat sink and the gas turbine performance can be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.