Abstract

This paper shows the span of results which can be obtained by modeling a system's behavior by stochastic processes and demonstrates practical rules for employing Markov and semi-Markov models. The introduction summarizes several methods for reliability analysis and gives the advantages and drawbacks of four methods: Markov processes, semi-Markov processes, supplementary variables, the method of stages. The remainder deals with reliability and availability modeling of a 2-unit redundant computer system. There are a) two types of maintenance: corrective (c. m.) and preventive (p. m.), and b) two system parameters: coverage, and an increased failure rate when one unit is under repair or inspection. Approximate expressions for reliability, mean time to failure, and asymptotic availability show the effects of the system parameters as well as of the shapes of the Cdf's of the times related to maintenance actions. For c.m., Markov modeling is a good approximation. For p.m., Markov modeling is a rough approximation; one can go to semi-Markov models or to the method of stages. Lastly, an approximate expression is given for the mean inspection interval which maximizes reliability and availability for p.m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call