Abstract

While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.