Abstract

Parametric amplifiers relying on the nonlinear four-wave mixing process are known for their signature symmetric gain spectrum, where signal and idler sidebands are generated on both sides of a powerful pump wave frequency. In this article we show analytically and numerically that parametric amplification in two identically coupled nonlinear waveguides can be designed in such a way that signals and idlers are naturally separated into two different supermodes, hence providing idler-free amplification for the supermode carrying signals. This phenomenon is based on the coupled-core fibers analogue of intermodal four wave-mixing occurring in a multimode fiber. The control parameter is the pump power asymmetry between the two waveguides, which leverages the frequency dependency of the coupling strength. Our findings pave the way for a novel class of parametric amplifiers and wavelength converters, based on coupled waveguides and dual-core fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call