Abstract

This paper reviews the way to compute capillary forces between two solids by numerically integrating the Laplace equation describing the shape of an axially symmetric meniscus at equilibrium. The numerical results of the proposed model have been experimentally validated with a test bed able to measure forces of about 1 mN with an accuracy of about 1 microN. Thanks to the simulation tool and the test bed, the influence of the following parameters has been studied: surface tension, solid geometry, volume of liquid, materials, separation distance between both solids, and surrounding environment. The way to compute the force from a given meniscus geometry has been clarified as far as the "Laplace" and "tension" contributions are concerned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.