Abstract

Plug-in hybrid electric vehicle (PHEV) technology combining the merits of Battery electric vehicle (BEV) and Hybrid electric vehicle (HEV), has the potential to reduce greenhouse gas (GHG) emissions, and petroleum consumption in the transportation sector. However, the cost-benefit of PHEVs mainly determined by battery technology, optimal powertrain design, and vehicle kilometers daily traveled and charging habits. Targeting to cost-benefit, the optimal design method was presented, taking battery cycle life Vs DOD data, driving data, battery performance data into consideration. The method provided optimal vehicle designs to realize minimum life cycle cost, and maximum petroleum consumption under different scenarios. For A-segment equivalent PHEV (similar to a F3DM), under Shanghai urban driving conditions, it can be find that while PHEVs with present traction battery technology, 30 km AER was most life cycle cost-effective to obtain maximum petroleum displacement based on Shanghai driving data. Large capacity battery lead to petroleum displacement not so much as cost increased. At China electricity price off peak, Li-ion battery pack costs must fall below ¥2.0/Wh to be cost competitive with equivalent internal combustion engine vehicles (ICEs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.