Abstract

Abstract Welding of wood is a well-known joining procedure that offers several advantages over traditional mechanical fasteners or gluing. During welding, extensive solid-state transformation phases occur in the so-called melting zone and the heat-affected zone. The nature and the extension of such transformations are correlated to the energy input and thus to the heat generated during the process at the wood joint interface. In the present work the influence of the welding parameters and wood grain orientation on the temperature profile and distribution and final strength of welded connections was investigated. For this purpose, the characteristics of the joints were evaluated with both destructive and non-destructive techniques. Non-destructive evaluation was performed with infrared thermography, which allowed measurement of the maximal and average peak temperature, temperature profile and distribution, and rate of temperature increase. Thus, this technique can also be used to detect welding defects and to provide information on material modification during welding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.