Abstract
Results are presented from probe measurements carried out in the scrape-off layer of the FT-2 tokamak in the course of additional lower hybrid heating, during which an L-H transition was observed. The objective of this study was to obtain information on the parameters of blobs-turbulent structures with enhanced plasma density. The measurements were performed not only on the low-field side of the torus, but also on the high-field side, which is still poorly studied. Coherent structures with radial velocities directed both toward the vessel wall and into the plasma column were revealed at the tokamak periphery. Blobs propagating toward the vessel wall were found to prevail both before and after the L-H transition. The average radial velocity of blobs in the L- and H-modes was determined experimentally. The dependence of the radial blob velocity on the transverse size and density of the structure agrees with the ballooning mode model. It is found that the average value of the poloidal blob velocity is four to five times higher than the average radial velocity. The results of measurements carried out on both sides of the torus indicate the presence of internal poloidal polarization of blobs. The average drift velocity of such polarized structures is directed toward the vessel wall. The L-H transition is accompanied by a reduction in the radial velocity. At the same time, the average plasma density inside the structures observed on the low-field side increases appreciably during the transition. The obtained dependences of the radial blob velocity on the plasma density inside the structure generally agree with predictions of the ballooning mode model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Plasma Physics Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.