Abstract

The paper presents the statistical data of the significant parameters of lightning flash, collected by many researchers over many years around the world. The significant parameters of a lightning flash are: peak current, waveshape and velocity of the return stroke, the total flash charge and /spl int/I/sup 2/dt. Negative first strokes have traditionally been considered to produce the worst stress on the system insulation. The subsequent negative strokes have significantly lower peak current but shorter wavefronts. This may stress the system insulation more. The positive strokes have about the same median current value as the negative first strokes and longer fronts, thus producing less stress. However, their duration is longer than that of the negative strokes. Therefore, the system insulation may be damaged because of the lower volt-time characteristic for long-duration waves. The positive strokes may also cause more thermal damage because of their significantly higher charge and /spl int/I/sup 2/dt. The relationship between the return-stroke velocity and the current peak is a significant parameter in estimating lightning-induced voltages and also in estimating the peak current from the radiated electromagnetic fields of the lightning channel. For better accuracy, the current and the velocity should be measured simultaneously. Better methods to measure the stroke current need to be developed. Correlation coefficient between various lightning parameters is another important parameter which will affect the analysis significantly. Lightning characteristics should be classified according to geographical regions and seasons instead of assuming these characteristics to be globally uniform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.