Abstract
Rotation is a critical component in 3D reconstruction systems, where accurate calibration of rotation axis parameters is essential for 3D stitching. In this study, what we believe to be a novel parameters estimation-based method for calibrating rotation axis parameters using 2D planar targets is proposed. Compared to traditional circle fitting methods, this method takes both orientation and position information into account, resulting in better precision performance. By leveraging the transmission of spatial pose relationships, the parameters estimation-based calibration method also effectively mitigates the impact of noise for more accurate calibration of rotation axis parameters. Error validation and 3D reconstruction experiments proved the superior performance of the proposed method. The experiment results demonstrate the effectiveness and applicability of the approach in enhancing the calibration of rotation axis parameters for 3D reconstruction systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.