Abstract

Testing MRI gradient-induced heating of implanted medical devices is required by regulatory organizations and others. A gradient heating test of the ISO 10974 Technical Specification (TS) for active implants was adopted for this study of passive hip implants. All but one previous study of hip implants used nonuniform gradient exposure fields in clinical scanners and reported heating of less than 5 °C. This present study adapted methods of the TS, addressing the unmet need for identifying worst-case heating via exposures to uniform gradient fields. To identify gradient-field parameters affecting maximum heating in vitro for a hip implant and a cylindrical titanium disk. Computational simulations and experimental validation of induced heating. Tissue-simulating gel. 42 T/s RMS, sinusoidal, continuous B fields with high spatial uniformity ASSESSMENT: Hip implant heating at 1-10 kHz, via computational modeling, validated by limited point measurements. Experimental measurements of exposures of an implant at 42 T/s for 4, 6, and 9kHz, analyzed at 50, 100, and 150seconds. One sample student's t-test to assess difference between computational and experimental results. Experimental vs. computational results were not significantly different (p < 0.05). Maximum simulated temperature rise (10-minute exposure) was 10 °C at 1kHz and 0.66 °C at 10 kHz. The ratio of the rise for 21 T/s vs. 42 T/s RMS was 4, after stabilizing at 50seconds (dB/dt ratio squared). Heating of an implant is proportional to the frequency of the B field and the implant's cross-sectional area and is greater for a thickness on the order of its skin depth. Testing with lower values of dB/dt RMS with lower cost amplifiers enables prediction of heating at higher values for dB/dt squared (per ISO TS) with identical frequency components and waveforms, once thermal equilibrium occurs. 1 TECHNICAL EFFICACY: Stage 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call