Abstract

Even at low Reynolds numbers, momentum can impact the shape of hydrodynamically focused flow. Both theoretical and experimental characterization of hydrodynamic focusing in microchannels at Reynolds numbers ≤25 revealed the important parameters that affect the shape of the focused layer. A series of symmetric and asymmetric microfluidic channels with two converging streams were fabricated with different angles of confluence at the junction. The channels were used to study the characteristics of Y-type microchannels for flow-focusing. Computational analysis and experimental results gathered using confocal microscopy and particle image velocimetry indicated that the orientation of the sheath and the sample stream inlets, as well as the absolute flow velocities, determine the curvature in the concentration distribution of the focused stream. Decreasing the angle of confluence between sheath and sample, as well as reducing the overall Reynolds number, resulted in a flat interface between sheath and focused fluids. Alignment of the faster flowing sheath fluid channel with the main channel also reduced the inertial effects and produced a focused stream with a flat concentration profile. Control over the shape of the focused stream is important in many biosensors and lab-on-a-chip devices that rely on hydrodynamic focusing for increased detection sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call