Abstract

While electron tomography can be used to visualize objects at nanoscale, it is difficult to perform reproducible quantitative measurements. Here we measure the shape and size of nanoparticles (NPs) in three dimensions (3D) using electron tomography. We evaluated the accuracy of maximum Feret diameter (Feretmax), minimum Feret diameter (Feretmini) and volume of NPs measurements from reconstructed 3D images which were obtained from data acquired with varied electron dose. We perform both simulations and experiment to clarify what factors effect on the accuracy of the NP shape measurement. Based on the results, suitable reconstruction methods and threshold for binarization were evaluated. We also report comparison results obtained on exactly the same samples in two different laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.