Abstract

Previous studies showed that carbon nanoparticles exposed to nanosecond laser pulses cause intracellular uptake of molecules. In this study, prostate cancer cells incubated with carbon-black (CB) nanoparticles and fluorescent marker compounds were exposed to 10ns laser pulses at 1064nm wavelength, after which intracellular uptake was measured by flow cytometry. Calcein and dextran (150kDa) were delivered into >50% of cells, whereas larger dextrans (≤2000kDa) were taken up by ~10% of cells. Under all conditions studied, cell viability loss was minimal. Uptake also increased with increasing laser power, increasing CB nanoparticle concentration, increasing CB nanoparticle size and decreasing laser wavelength. CB nanoparticles enabled uptake better than gold nanoparticles or multi-walled carbon nanotubes under the conditions studied. Proof-of-principle experiments showed intracellular uptake by cells in vivo. We conclude that intracellular uptake of molecules using laser-activated CB nanoparticles provides a promising approach to deliver molecules into cells. From the Clinical EditorDelivery of drugs using nanoparticles as carriers is promising. The authors in this study investigated the use of laser-activated carbon nanoparticles to increase the cellular uptake of payloads in various parameters. The positive data generated should provide further platform for a new approach for intracellular delivery of molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.