Abstract

Radiation losses that occur when bending graded-index polymer optical fibers (POFs) are analyzed as a function of the profile exponent, the light wavelength, the fiber core radius, and the length of the bent section. For this purpose, a ray-tracing model is used, which combines both the generalized Fresnel power transmission coefficients for curved graded-index media and the differential equations that govern the ray paths in highly multimode graded-index fibers. This model is applied to the most recent types of graded-index POF, for which the choice of the core radius and profile exponent is discussed from the point of view of bending losses (the greater the profile exponent and the core radius, the greater the bending losses). The influence of profile exponents different from two is included for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call