Abstract

This study reports degradation of azoxystrobin (AZOXY) and imidacloprid (IMIDA) in the rice straw (RS)/corn cob (CC) and peat (P)/compost (C)-based biomixtures. The effect of biomixture preconditioning (10 days incubation prior to pesticide application), pesticide concentration and moisture content was evaluated. Results suggested that conditioning of biomixture greatly affected IMIDA degradation where half-life (t1/2) was reduced by 5–9 times. This was attributed to higher microbial biomass carbon content and dehydrogenase activity in the conditioned biomixtures. Pesticide application in the conditioned biomixture did not show any negative impact on soil microbial parameters. Both pesticides degraded at faster rate in the rice straw-based biomixtures than in the corn cob-based biomixtures. Degradation slowed down with increase in initial concentration of pesticides in biomixture and 1.6–3.0 (AZOXY) and 2.4–3.6 (IMIDA) times increase in t1/2 values was observed. The moisture content of biomixture showed positive effect on degradation which increased when moisture content was increased from 60 to 80% water holding capacity. The effect was significant for IMIDA degradation in the corn cob-based biomixtures and AZOXY degradation in the peat biomixtures. The rice straw-based biomixtures were better in degrading AZOXY and IMIDA and can be used in biopurification systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.