Abstract

Abstract Raindrop formation processes in warm clouds mainly consist of condensation and collision–coalescence of small cloud droplets. Once raindrops form, they can continue growing through collection of cloud droplets and self-collection. In this study, we develop novel emulators to represent raindrop formation as a function of various physical or background environmental conditions by using a sophisticated aerosol–cloud model containing 300 droplet size bins and machine learning methods. The emulators are then implemented in two microphysics schemes in the Weather Research and Forecasting Model and tested in two idealized cases. The simulations of shallow convection with the emulators show a clear enhancement of raindrop formation compared to the original simulations, regardless of the scheme in which they were embedded. On the other hand, the simulations of deep convection show a more complex response to the implementation of the emulators, in terms of the changes in the amount of rainfall, due to the larger number of microphysical processes involved in the cloud system (i.e., ice-phase processes). Our results suggest the potential of emulators to replace the conventional parameterizations, which may allow us to improve the representation of physical processes at an affordable computational expense. Significance Statement Formation of raindrops marks a critical stage in cloud evolution. Accurate representations of raindrop formation processes require detailed calculations of cloud droplet growth processes. These calculations are often not affordable in weather and climate models as they are computationally expensive due to their complex dependence on cloud droplet size distributions and dynamical conditions. As a result, simplified parameterizations are more frequently used. In our study we trained machine learning models to learn raindrop formation rates from detailed calculations of cloud droplet evolutions in 1000 parcel-model simulations. The implementation of the developed models or the emulators in a weather forecasting model shows a change in the total rainfall and cloud characteristics, indicating the potential improvement of cloud representations in models if these emulators replace the conventional parameterizations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call