Abstract

AbstractWith projected expansion of biofuel production at a global scale, there is a pressing need to develop adequate representation of bioenergy crops in land surface models to help effectively quantify the biogeophysical and biogeochemical effects of its associated land use changes. This study implements two new perennial bioenergy crops, Miscanthus and switchgrass, into the Community Land Model Version 5 based on site‐level observations from the midwestern United States by modifying parameters associated with photosynthesis, phenology, allocation, decomposition, and carbon cost of nitrogen uptake and integrating concomitantly land management practices. Sensitivity analyses indicate that carbon and energy fluxes of the perennial crops are most sensitive to photosynthesis and phenology parameters. Validation of simulated fluxes against site‐level measurements demonstrates that the model is capable of capturing the overall patterns of energy and carbon fluxes, as well as physiological transitions from leaf emergence to senescence. Compared to annual crops, perennial crops feature longer growing season, greater leaf areas, and higher productivity, leading to increased transpiration, lower annual runoff, and larger carbon uptake. The model simulations suggest that with higher CO2 assimilation rates and lower demands for nutrients and water, high‐yielding perennial crops are promising alternatives of bioenergy feedstocks compared to traditional annual crops not only for mitigating climate change but also for environmental conservation purposes by reducing fertilizer application and therefore alleviating surface‐ and ground‐water contaminations. Although the local‐scale simulations shed light on potential benefits of using perennial grasses as bioenergy feedstocks, quantifying consequences of their plantations at larger scales warrants additional investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call