Abstract

Prediction of multi-dimensional time-series data, which may represent such diverse phenomena as climate changes or financial markets, remains a challenging task in view of inherent nonlinearities and non-periodic behavior. In contrast to other recurrent neural networks, echo state networks (ESNs) are attractive for (online) learning due to lower requirements w.r.t.training data and computational power. However, the randomly-generated reservoir renders the choice of suitable hyper-parameters as an open research topic. We systematically derive and exemplarily demonstrate design guidelines for the hyper-parameter optimization of ESNs. For the evaluation, we focus on the prediction of chaotic time series, an especially challenging problem in machine learning. Our findings demonstrate the power of a hyper-parameter-tuned ESN when auto-regressively predicting time series over several hundred steps. We found that ESNs’ performance improved by 85.1%-99.8% over an already wisely chosen default parameter initialization. In addition, the fluctuation range is considerably reduced such that significantly worse performance becomes very unlikely across random reservoir seeds. Moreover, we report individual findings per hyper-parameter partly contradicting common knowledge to further, help researchers when training new models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call