Abstract

Tiling, a key transformation for optimizing programs, has been widely studied in literature. Parameterized tiled code is important for auto-tuning systems since they often execute a large number of runs with dynamically varied tile sizes. Previous work on tiled code generation has addressed parameterized tiling for the sequential context, and the parallel case with fixed compile-time constants for tile sizes. In this paper, we revisit the problem of generating tiled code using parametric tile sizes. We develop a systematic approach to formulate tiling transformations through manipulation of linear inequalities and develop a novel approach to overcoming the fundamental obstacle faced by previous approaches regarding generation of parallel parameterized tiled code. To the best of our knowledge, the approach proposed in this paper is the first compile-time solution to the problem of parallel parameterized code generation for affine imperfectly nested loops. Experimental results demonstrate the effectiveness of the implemented system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.