Abstract
Repetitive movements lead to isochronous serial interval production which exhibit inherent variability. The Wing-Kristofferson model offers a decomposition of the interresponse intervals in tapping tasks based on a cognitive component and on a motor component. We suggest a new theoretical and fully parametric approach to this model in which the cognitive component is modeled as a long-memory process and the motor component is treated as a white noise process, mutually independent. Under these assumptions, we obtained the autocorrelation function and the spectral density function. Furthermore, we propose an estimator based on the maximization of the frequency-domain representation of the likelihood function. Finally, we conducted a simulation study to assess the properties of this estimator and performed an experimental study involving tapping tasks with two target frequencies (1.250 Hz and 0.625 Hz).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.