Abstract

A vertex set $S$ of a graph $G$ is geodetic if every vertex of $G$ lies on a shortest path between two vertices in $S$. Given a graph $G$ and $k \in \mathbb{N}$, the NP-hard ${\rm G{\small EODETIC}~S{ \small ET}}$ problem asks whether there is a geodetic set of size at most $k$. Complementing various works on ${\rm G{\small EODETIC}~S{ \small ET}}$ restricted to special graph classes, we initiate a parameterized complexity study of ${\rm G{\small EODETIC}~S{ \small ET}}$ and show, on the one side, that ${\rm G{\small EODETIC}~S{ \small ET}}$ is $W[1]$-hard when parameterized by feedback vertex number, path-width, and solution size, combined. On the other side, we develop fixed-parameter algorithms with respect to the feedback edge number, the tree-depth, and the modular-width of the input graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.