Abstract

We study the language-theoretical aspects of parameterized communicating automata (PCAs), in which processes communicate via rendez-vous. A given PCA can be run on any topology of bounded degree such as pipelines, rings, ranked trees, and grids. We show that, under a context bound, which restricts the local behavior of each process, PCAs are effectively complementable. Complementability is considered a key aspect of robust automata models and can, in particular, be exploited for verification. In this paper, we use it to obtain a characterization of context-bounded PCAs in terms of monadic second-order (MSO) logic. As the emptiness problem for context-bounded PCAs is decidable for the classes of pipelines, rings, and trees, their model-checking problem wrt. MSO properties also becomes decidable. While previous work on model checking parameterized systems typically uses temporal logics without next operator, our MSO logic allows one to express several natural next modalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call