Abstract
In kidney exchange programs, multiple patient-donor pairs each of whom are otherwise incompatible, exchange their donors to receive compatible kidneys. The Kidney Exchange problem is typically modelled as a directed graph where every vertex is either an altruistic donor or a pair of patient and donor; directed edges are added from a donor to its compatible patients. The computational task is to find if there exists a collection of disjoint cycles and paths starting from altruistic donor vertices of length at most l_c and l_p respectively that covers at least some specific number t of non-altruistic vertices (patients). We study parameterized algorithms for the kidney exchange problem in this paper. Specifically, we design FPT algorithms parameterized by each of the following parameters: (1) the number of patients who receive kidney, (2) treewidth of the input graph + max{l_p, l_c}, and (3) the number of vertex types in the input graph when l_p <= l_c. We also present interesting algorithmic and hardness results on the kernelization complexity of the problem. Finally, we present an approximation algorithm for an important special case of Kidney Exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.