Abstract

ABSTRACTA combined model to simulate CO2 and H2O gas exchange at the leaf scale was parameterized using data obtained from in situ leaf‐scale observations of diurnal and seasonal changes in the CO2 and H2O gas exchange of four temperate deciduous broad‐leaved trees using a porometric method. The model consists of a Ball et al. type stomatal conductance submodel [Ball, Woodrow & Berry, pp. 221–224 in Progress in Photosynthesis Research (ed. I. Biggins), Martinus‐Nijhoff Publishers, Dordrecht, The Netherlands, 1987] and a Farquhar et al. type biochemical submodel of photosynthesis (Farquhar, von Caemmerer & Berry, Planta 149, 78–90, 1980). In these submodels, several parameters were optimized for each tree species as representative of the quantitative characteristics related to gas exchange. The results show that the seasonal physiological changes of Vcmax25 in the biochemical model of photosynthesis should be used to estimate the long‐term CO2 gas exchange. For Rd25 in the biochemical model of photosynthesis and m in the Ball et al. type stomatal conductance model, the difference should be counted during the leaf expansion period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.