Abstract

To investigate the feasibility of parameterizing macromolecule (MM) resonances directly from short echo time (TE) spectra rather than pre-acquired, T1 -weighted, metabolite-nulled spectra in 1 H-MRS. Initial line parameters for metabolites and MMs were set for rat brain spectra acquired at 9.4 Tesla upon a priori knowledge. Then, MM line parameters were optimized over several steps with fixed metabolite line parameters. The proposed method was tested by estimating metabolite T1 . The results were compared with those obtained with two existing methods. Furthermore, subject-specific, spin density-weighted, MM model spectra were generated according to the MM line parameters from the proposed method for metabolite quantification. The results were compared with those obtained with subject-specific, T1 -weighted, metabolite-nulled spectra. The metabolite T1 were largely in close agreement among the three methods. The spin density-weighted MM resonances from the proposed method were in good agreement with the T1 -weighted, metabolite-nulled spectra except for the MM resonance at ∼3.2 ppm. The metabolite concentrations estimated by incorporating these two different spectral baselines were also in good agreement except for several metabolites with resonances at ∼3.2 ppm. The MM parameterization directly from short-TE spectra is feasible. Further development of the method may allow for better representation of spectral baseline with negligible T1 -weighting. Magn Reson Med 78:836-847, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call