Abstract

Abstract The process of finding computationally efficient methods to parameterize the effects of the radiative interactions between water vapor absorption and cloud droplet absorption is fraught with complications. Inside a cloud, scattering greatly enhances the vapor absorption, and the amount of vapor above the cloud layer influences the absorption in a cloud layer. A widely used technique used to treat water vapor and liquid absorption is through the use of the k-distribution method. In the current study, this method is used with a one- and a three-band model to produce absorptances, reflectances, and transmittances of cloudy layers in the near infrared, but unlike standard usage, the single scattering properties are assigned to individual k values from weighting with the k distribution in the limit of semi-infinite and thin clouds, as well as the square root of the co-albedo. While improvement in the accuracy of the radiative parameters is noted for the three-band model as compared to standard three-b...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call