Abstract

Aerosol water uptake and the related influence on its optical properties owing to the hygroscopic growth of polydisperse aerosols have a significant effect on air quality and climate. This study develops an analytical parameterization for a single hygroscopic optical parameter and the scattering enhancement factor for polydisperse aerosol sizes. Polydisperse lognormal size distributions for geometric mean diameters of 0.05–1 μm and geometric standard deviations of 1.3–2.5 are considered with real refractive indices between 1.35-1.6. The analytical expression obtained for the optical parameter is compared to Mie theory and reasonable agreements within the size range investigated in this study are observed. Further, our results show that the analytical expression could express polydispersed aerosol optical properties as a function of geometric mean diameter and geometric standard deviation of a lognormal distribution and the refractive index. The obtained analytical expression can be efficiently used for 3D models with a reduced computational burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call