Abstract
In the paper, we study the Maximum Satisfiability and the Partial Maximum Satisfiability problems. Using Gallai–Edmonds decomposition, we significantly improve the upper bound for the Maximum Satisfiability problem parameterized above maximum matching in the variable-clause graph. Our algorithm operates with a runtime of O*(2.83^k'), a substantial improvement compared to the previous approach requiring O*(4^k' ), where k' denotes the relevant parameter. Moreover, this result immediately implies O*(1.14977^m) and O*(1.27895^m) time algorithms for the (n, 3)-MaxSAT and (n, 4)-MaxSAT where m is the overall number of clauses. These upper bounds improve prior-known upper bounds equal to O*(1.1554^m) and O*(1.2872^m). We also adapt the algorithm so that it can handle instances of Partial Maximum Satisfiability without losing performance in some cases. Note that this is somewhat surprising, as the existence of even one hard clause can significantly increase the hardness of a problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.