Abstract

Microphysics of clouds with the Relaxed Arakawa–Schubert Scheme (McRAS) was upgraded for simulating the Aerosol Indirect Effects (AIE) for water clouds. The AIE comprises of i) Fountoukis and Nenes aerosol activation module for obtaining cloud condensation nuclei; ii) Seifert and Beheng algorithms for precipitation microphysics but with modified accretion constant for the coarse vertical-resolution typical of a global general circulation model (GCM); and iii) Khvorostyanov and Curry parameterization for computing the effective radius ( r e ) of cloud drops. The upgraded package, named McRAS-AC, was evaluated using the 3-year ARM-SGP Single Column Model (SCM) data. Invoking only the most dominant sulfate aerosols over the region, McRAS-AC simulated realistic annual mean and annual cycles of cloud water, cloud optical thicknesses, cloud drop number concentration, and r e . The follow-on SCM-sensitivity simulations showed that accretion of cloud water is sensitive to i) the terminal velocity of hydrometeors produced by autoconversion and ii) cloud height increases due to in-cloud condensation heating. The impact of aerosol mass concentration on the resultant column cloud water, and bulk optical properties of clouds were assessed by using 1/8 to 8 times the average monthly aerosol mass concentration estimates of GOCART aerosol climatology. A log-linear relation between cloud-radiative forcing and aerosol-mass concentration emerged in the simulated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.