Abstract

This paper develops a new parameterized approach to the problems of delay-dependent analysis and feedback stabilization for a class of linear continuous-time systems with time-varying delays. An appropriate Lyapunov-Krasovskii functional is constructed to exhibit the delay-dependent dynamics. The construction guarantees avoiding bounding methods and effectively deploying injecting parametrized variables to facilitate systematic analysis. Delay-dependent stability provides a characterization of linear matrix inequalities (LMIs)-based conditions under which the linear time-delay system is asymptotically stable with a γ-level £2 gain. By delay-dependent stabilization, a state-feedback scheme is designed to guarantee that the closed-loop switched system enjoys the delay-dependent asymptotic stability with a prescribed γ-level £2 gain. It is established that the methodology provides the least conservatism in comparison with other published methods. Extension to systems with convex-bounded parameter uncertainties in all system matrices is also provided. All the developed results are tested on representative examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.