Abstract

AbstractThe principal challenge in the parameterization of storm flow models for agricultural catchments with an artificial drainage network and fields with different degrees of tillage lies in the parsimonious definition of distributed model parameters in a way that reduces the number of calibration parameters to a justifiable minimum. This paper presents a comprehensive case study for the parameter estimation of a distributed storm flow model applied to an agricultural catchment (0.91 km2) in the Mediterranean region. Model parameterization was combined with procedures for multi‐criteria, multi‐storm calibration, where we automatically calibrated three parameters related to flow velocity and infiltration, and compared single and multi‐storm criteria that are based on discharge volume, peak flow, and the Nash–Sutcliffe coefficient. Multi‐storm calibration yielded a set of parameter values for the simulation batch with best multi‐storm overall performance, which are close to the median values in the pre‐calibration of individual storms. Our results suggest that flow velocities and proportionality of the channel infiltration rate do not vary significantly over the course of 11 years. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.