Abstract

In this paper, synchronization in two coupled neurons with spiking, bursting and chaos firings is investigated as the coupling strength gets increased. Synchronization state can be identified by means of the bifurcation diagram, the correlation coefficient and ISI-distance. It is illustrated that the coupled neurons can exhibit different types of synchronization state when the coupling strength increases. The different synchronization processes appear similar, but their detailed processes are different depending on the parameter values. The synchronization of neuronal network with two different network connectivity patterns is also studied. It is shown that chaotic and high period pattern are more difficult to get complete synchronization than the situation in single spike and low period pattern. It is also demonstrated that the synchronization status of multiple neurons is dependent on the network connectivity patterns. These results may be instructive to understand synchronization in neuronal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.