Abstract

Water resources modelers face the challenge of dealing with numerous uncertainties due to the lack of knowledge of the natural systems, numerical approaches used in modeling (equations, parameters, structures, solutions), and field data collected to set up and evaluate models. Propagation of parameter uncertainty into model results is a relevant topic in environmental hydrology. Uncertainty analyses improve assessment of hydrological modeling. There is a need in modern hydrology of developing and testing uncertainty analysis methods that support hydrological model evaluation. In this research the propagation of model parameter uncertainty into streamflow model results is evaluated. The Hydrological Simulation Program – FORTRAN (HSPF) supported by the US Environmental Protection Agency was evaluated using hydroenvironmental data from the Luxapallila Creek watershed located in Mississippi and Alabama, USA. The uncertainty bounds of model outputs were computed using the Monte Carlo simulation and Harr’s point estimation methods. Analysis of parameter uncertainty propagation on streamflow simulations from 12 HSPF parameters was accomplished using 5,000 Monte Carlo random samples and 24 Harr selected points for each selected parameter. The comparison showed that Harr’s method could be an appropriate initial indicator of parameter uncertainty propagation on streamflow simulations, particularly for hydrology models with several parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call