Abstract

BackgroundMagnetic resonance data were collected from a diverse population of gravid women to objectively compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging of the developing human brain. MaZda and B11 computational-visual cognition tools were used to process 2D images. We proposed a wavelet-based parameter and two novel histogram-based parameters for Fisher texture analysis in three-dimensional space.ResultsWavenhl, focus index, and dispersion index revealed better quality for 3 T. Though both 1.5 and 3 T images were 16-bit DICOM encoded, nearly 16 and 12 usable bits were measured in 3 and 1.5 T images, respectively. The four-bit padding observed in 1.5 T K-space encoding mimics noise by adding illusionistic details, which are not really part of the image. In contrast, zero-bit padding in 3 T provides space for storing more details and increases the likelihood of noise but as well as edges, which in turn are very crucial for differentiation of closely related anatomical structures.ConclusionsBoth encoding modes are possible with both units, but higher 3 T resolution is the main difference. It contributes to higher perceived and available dynamic range. Apart from surprisingly larger Fisher coefficient, no significant difference was observed when testing was conducted with down-converted 8-bit BMP images.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-016-2300-3) contains supplementary material, which is available to authorized users.

Highlights

  • Magnetic resonance data were collected from a diverse population of gravid women to objectively compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging of the developing human brain

  • Among them is texture analysis, the evolving cybernetics of radiology. This experiment is a translational study seeking to objectively compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging (MRI) of the developing human brain (Fig. 1), in order to determine whether the extra administrative cost is worthy for the patient and the healthcare system

  • Some histogram parameters can be used to differentiate noise and related artifacts from very sharp details such as edges. This multidisciplinary research was approved by a relevant bioethics committee, consisting of emeritus professors and senior researchers from the Medical University of Lodz (MUL), Barlicki University Hospitals (BUH), Polish Mother’s Memorial Hospital Research Institute (ICZMP) et al Written informed consent was obtained from all subjects, and the methods were carried out in accordance with the approved guidelines

Read more

Summary

Introduction

Magnetic resonance data were collected from a diverse population of gravid women to objectively compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging of the developing human brain. Among them is texture analysis, the evolving cybernetics of radiology This experiment is a translational study seeking to objectively compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging (MRI) of the developing human brain (Fig. 1), in order to determine whether the extra administrative cost is worthy for the patient and the healthcare system. MRI replacing USG during pregnancy examination In terms of safety, ultrasonography (USG) remains the gold standard for prenatal central nervous system (CNS) imaging [1]. It is used for prevention and diagnosis of congenital malformation [2, 3]. Gentillon et al BMC Res Notes (2016) 9:496

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.