Abstract

Previous research has shown that interchange-fracture enhanced geothermal systems show desirable heat extraction performance. However, their parameter sensitivity has not been systematically investigated. In this study, a three-dimensional, unsteady flow and heat transfer model for an enhanced geothermal system with an interchange-fracture structure was established. The influences of pivotal parameters, including stimulated reservoir volume permeability, fracture spacing, fracture aperture, and injection flow rate on the thermal extraction performance of the interchange-fracture enhanced geothermal system were systematically researched. In addition, the economics of this system were evaluated. The results show that the heat extraction performance of the interchange-fracture system is significantly affected by a change of stimulated reservoir volume permeability and injection flow rate. Increasing permeability reduces electricity costs and improves economic income, while increasing the injection flow rate increases output power but hinders the long-term running stability of the system. Our research provides guidance for the optimal design of an interchange-fracture enhanced geothermal system. Cited as : Yu, G., Liu, C., Zhang, L., Fang, L. Parameter sensitivity and economic analyses of an interchange-fracture enhanced geothermal system. Advances in Geo-Energy Research, 2021, 5(2): 166-180, doi: 10.46690/ager.2021.02.06

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.