Abstract

Swarm intelligence (SI) algorithms are handy tools for solving complex optimization problems. When problems grow in size and complexity, an increase in population or number of iterations might be required in order to achieve a good solution. These adjustments also impact the execution time. This article investigates the trade-off involving population size, number of iterations and problem complexity, aiming to improve the efficiency of SI algorithms. Results based on a parallel implementation of Fish School Search show that increasing the population size is beneficial for finding good solutions. However, we observed an asymptotic behavior, i.e. increasing the population over a certain threshold only leads to slight improvements. Furthermore, the execution time was analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.