Abstract
Abstract The problem of selecting parameters for stochastic model updating is one that has been studied for decades, yet no method exists that guarantees the ‘correct’ choice. In this paper, a method is formulated based on global sensitivity analysis using a new evaluation function and a composite sensitivity index that discriminates explicitly between sets of parameters with correctly-modelled and erroneous statistics. The method is applied successfully to simulated data for a pin-jointed truss structure model in two studies, for the cases of independent and correlated parameters respectively. Finally, experimental validation of the method is carried out on a frame structure with uncertainty in the position of two masses. The statistics of mass positions are confirmed by the proposed method to be correctly modelled using a Kriging surrogate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.