Abstract
Information about the psychometric properties of items can be highly useful in assessment development, for example, in item response theory (IRT) applications and computerized adaptive testing. Although literature on parameter recovery in unidimensional IRT abounds, less is known about parameter recovery in multidimensional IRT (MIRT), notably when tests exhibit complex structures or when latent traits are nonnormal. The current simulation study focuses on investigation of the effects of complex item structures and the shape of examinees' latent trait distributions on item parameter recovery in compensatory MIRT models for dichotomous items. Outcome variables included bias and root mean square error. Results indicated that when latent traits were skewed, item parameter recovery was generally adversely impacted. In addition, the presence of complexity contributed to decreases in the precision of parameter recovery, particularly for discrimination parameters along one dimension when at least one latent trait was generated as skewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.