Abstract
Improper design of friction pendulum bearings can lead to poor seismic reduction performance and may result in the failure of local vulnerable components. And the parameter design of friction pendulum bearings mainly relies on experience and verification calculations at present. This paper proposes an adaptive genetic algorithm considering the overall evolution state of the population, adjusting crossover and mutation probabilities adaptively based on individual fitness and population diversity. Compared to traditional algorithms, it exhibits better global search capabilities and convergence efficiency. Combining the improved genetic algorithm with finite element models, a parameter optimization method is proposed. The parameters of friction pendulum bearings are optimized. In response to the situation in this paper, the optimal friction coefficient of the friction pendulum bearing is determined to be 0.01 and the optimal equivalent radius is 3.3 m. This can provide a reference for the design of seismic isolation devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.